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Summary

For legged robots to robustly recover from external dis-
turbances and handle unmodeled environments, they
must have control policies which can reason about mak-
ing or breaking contact with the world at run-time. Such
multi-contact control problems can be naturally cast in
the hybrid model predictive control (MPC) framework,
but at a computational cost which is too high for on-
line use. To overcome this issue, we are exploring results
from the explicit MPC literature in order to exploit the
known structure of the optimal control policy and derive
a concise approximation, which can be queried efficiently
online.

Introduction

Recent works in the context of humanoid locomotion
[1, 2] have shown that, with plausible assumptions and
limited approximations, a legged robot can be modeled
as a piecewise affine dynamical system. Such a model,
if combined with a convex control objective function,
allows searching for a globally optimal set of contacts
and inputs in an MPC fashion, using mixed-integer con-
vex optimization. Such optimizations, however, typically
take hundreds of milliseconds to tens of seconds to run
[1, 2]. Explicit MPC attempts to solve this problem by
computing the entire optimal policy as an explicit func-
tion of the initial state [3], but at a cost which grows
rapidly with the size of the state. Instead, if we treat the
optimal policy as something which is too large to model
completely, but from which we can sample by running
mixed-integer convex programs, then we hope to be able
to approximate that optimal policy well.

Explicit Hybrid MPC

MPC for hybrid systems has been a very active research
area over the last 20 years: various general modeling
frameworks have been proposed [4], stability properties
have been analyzed in depth [5], and a multitude of suc-
cessful implementations have been presented (see, e.g.,
[6]). However, the intrinsic combinatorial nature of these
problems makes the underlying mixed-integer quadratic
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program (MIQP) prohibitively expensive for high-rate
control, even for for low-dimensional systems.

Explicit MPC takes advantage of multiparametric opti-
mization techniques to derive the solution of the optimal
control problem as an explicit function of the initial state
[3], so that the online control computation is reduced to
a quick function evaluation.

While this approach has been very successful for linear
systems, its extension to hybrid systems is extremely
burdensome. This is mainly due to the fact that, to
this day, the detection of boundaries in the parameter
space between regions associated with different switch-
ing sequences is performed by a direct cost comparison
approach [7] that, in practice, requires the solution of
a multiparametric program for each feasible combina-
tion of binary variables. Nonetheless, in recent years,
the MPC community has made great efforts to overcome
this hurdle and some promising approaches have been
proposed. In [8], for example, an algorithm which solves
the problem with a user-defined level of suboptimality
has been presented, reducing both storage requirements
and online computational effort, while ensuring stability
of the controlled system.

Model

We have chosen to simplify our model system as much as
possible while still capturing the most basic elements of
locomotion. We represent the robot in the sagittal plane
by a single rigid body plus four limbs (two hands and
two feet), modeled as massless point contacts. Approx-
imate kinematic constraints are enforced by linear in-
equality constraints on the relative positions of the body
and limbs. We enforce that all contact undergoes stick-
ing friction and that all collisions are perfectly inelastic.

The robot’s environment consists of a fixed floor and one
or more fixed planar walls. Our objective is to stabilize
the position and velocity of the robot’s center of mass
from a wide variety of initial states, some of which will
require stepping or reaching out to lean on the walls.

Body pose and centroidal angular momentum must be
kept within bounds. Unfortunately, the dynamics of an-
gular momentum are bilinear in the decision variables
representing contact locations and forces. We handle the
bilinearity using piecewise McCormick envelopes [1].



Mixed-Integer Quadratic Program

At each time step i ∈ {1, . . . , N}, we have decision vari-
ables corresponding to the position and orientation q0

i ,
and velocity v0

i of the robot’s center of mass, the position
qj

i of each limb j, the contact force f j
i exerted by each

limb j. We also introduce binary decision variables zj
i

which indicate whether each limb j is in contact with the
world, and binary variables mk

i which indicate whether
each piece k of the McCormick envelope approximation
is active. To ensure that the solution is physically re-
alistic, we must ensure that when zj

i = 0 (no contact),
we have f j

i = 0, and when zj
i = 1 (contact), we have

f j
i inside the friction cone and limb j actually in contact
with the appropriate surface and stationary. This can be
imposed with a set of linear inequality constraints using
a big-M or convex hull formulation [1]. Additionally, we
add linear constraints to impose time-stepping dynam-
ics of q0

i , and v0
i , kinematic reachability constraints on

qj
i − q0

i for each limb j, and any further linear state con-
straints we may need to impose on the robot. We employ
a quadratic objective function to penalize deviation from
a desired final position, velocity, and posture.

Exploiting Problem Structure

The optimization problem presented above is very gen-
eral, however there are specifics about the problem struc-
ture that can be exploited to make the problem much
more tractable. Consider the possible assignments of a
the integer variable {zj

i }N
i=1 corresponding to a the jth

contact point. Although there are 2N possible integer
assignments, only a small number of these are likely rel-
evant for multi-contact control. Specifically, the opti-
mization allows {zj

i }N
i=1 to continually alternate between

0 and 1, continually making and breaking contact with
the jth contact point. We conjecture that for time hori-
zons of a few seconds, one or two switching events per
limb will be sufficient to stabilize the robot. Allowing
just one switching event per limb drastically simplifies
the combinatorial optimization, reducing the number of
possible assignments of the zj

i from 2LN to just NL,
where L is the number of limbs. Allowing two contact
switches per limb increases the number of assignments
to O(N2L). The restriction that the jth limb makes at
most S contact switches can be enforced with the con-
straint

∑N−1
i=1 |z

j
i − zj

i+1| ≤ S, which can be represented
with a set of linear inequalities and slack variables.

An additional structure which we will seek out and at-
tempt to exploit is submodularity. Submodularity en-
codes a particular form of diminishing returns: infor-
mally, a function f : S ⊆ M 7→ R is submodular if
adding an element k to S will increase the value of f(S)
by an amount that diminishes as S grows [9]. We hy-
pothesize that the set of contact modes switches in this
simple model may exhibit submodularity, i.e. that the
stability benefit of a new contact mode switch diminishes

with each additional switch. The problem of maximiz-
ing a submodular function can be solved by a greedy
approach with only bounded suboptimality [9]. By anal-
ogy, we will investigate whether additional contact mode
switches can also be treated greedily.

Conclusion

We believe that mature control techniques such as ex-
plicit MPC, combined with approximation techniques
from machine learning, can have great impact on the
success of walking robots. Our experiments are ongoing,
but we look forward to reporting on both our successes
and failures at the meeting.
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